Hurn $6^{\text {th }}$ grade Math $2^{\text {nd }}, 3^{\text {rd }} 4^{\text {th }}, 5^{\text {th }}, 6^{\text {th }}$	Monday 1-14	Tuesday 1-15	Wednesday $1-16$	Thursday 1-17	Friday $1-18$
Objective	NWEA Testing	Content: I can demonstrate application of coordinate graphing by plotting negative decimals on the number line with 80\% accuracy. Language: I can write to explain the relationship between opposites on the number line, using the sentence starter, "Opposites on the number line are..."	Content: I can demonstrate application coordinate graphing by plotting in all four quadrants of the coordinate grid with 80% accuracy. Language: I can write to explain how to plot points on the coordinate grid using the sentence starter, "To plot points on the coordinate grid first.."	$\begin{aligned} & \text { UNIT } \\ & \text { REVIEW } \end{aligned}$	$\begin{aligned} & \text { Unit } \\ & \text { Test } \end{aligned}$
Vocabulary	Operations, Decimals, Fractions, Number line, Rational Number, Negative Number				
Differentiated Instruction/ Class setup	Whole Group				
CCSS	CCSS.MATH.CONTENT.6.NS.B. 3 Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation. CCSS.MATH.CONTENT.6.NS.C. 6 Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates. CCSS.MATH.CONTENT.6.NS.A. 1 Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for $(2 / 3) \div(3 / 4)$ and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $(2 / 3) \div(3 / 4)=8 / 9$ because 3/4 of 8/9 is $2 / 3$. (In general, $(a / b) \div(c / d)=a d / b c$.) How much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many 3/4-cup servings are in $2 / 3$ of a cup of yogurt? How wide is a rectangular strip of land with length $3 / 4$ mi and area $1 / 2$ square mi?.				
$6{ }^{\text {rd }}$ hour Supplemental Math	Homework help	Project on Google Classroom	Workbook I ready practice	Math games Boys vs girls continued	Study Hall Friday

